F-111.net

The website dedicated to all variants of the F-111

General Dynamics F-111 variants

F-111A
The F-111A was the initial production version of the F-111. Early A-models used the TF30-P-1 engine. Most A-models used the TF30-P-3 engine with 12,000 lbf (53 kN) dry and 18,500 lbf (82 kN) afterburning thrust and "Triple Plow I" variable intakes, providing a maximum speed of Mach 2.3 (1,450 mph, 2,300 km/h) at altitude.[90] The variant had a maximum takeoff weight of 92,500 lb (42,000 kg) and an empty weight of 45,200 lb (20,500 kg).The A-model's Mark I avio nics  suite included the General Electric AN/APQ-113 attack radar mated to a separate Texas Instruments AN/APQ-110 terrain-following radar lower in the nose and a Litton AJQ-20 inertial navigation and nav/attack system. The terrain-following radar (TFR) was integrated into the automatic flight control system, allowing for "hands-off" flight at high speeds and low levels (down to 200 ft).Total production of the F-111As was 159, including 30 pre-production aircraft that were later brought up to production standards. 42 F-111As were converted to EF-111A Ravens for an electronic warfare tactical electronic jamming role. In 1982, four surviving F-111As were provided to Australia as attrition replacements and modified to F-111C standard; these were fitted with the longer-span wings and reinforced landing gear of the C-model.Three pre-production F-111A were provided to NASA for various testing duties. The 13th F-111A was fitted with new wing designs for the Transonic Aircraft Technology and Advanced Fighter Technology Integration programs in the 1970s and 1980s. It was retired to the United States Air Force Museum at Wright-Patterson Air Force Base in 1989. The remaining unconverted F-111As were mothballed at Aerospace Maintenance and Regeneration Center at Davis-Monthan Air Force Base in June 1991.

F-111B
The F-111B was to be a fleet air defense (FAD) fighter for the U.S. Navy, fulfilling a naval requirement for a carrier-based fighter aircraft capable of carrying heavy, long-range missiles to defend aircraft carriers and their battle groups from Soviet bombers and fighter-bombers equipped with anti-ship missiles. General Dynamics, lacking experience with carrier-based aircraft, partnered with Grumman for this version. The F-111B suffered development problems and Navy requirements changed to an aircraft with maneuverability for dogfighting. The swing-wing configuration, TF-30 engines, AIM-54 Phoenix air-to-air missiles and AWG-9 radar developed for this aircraft were used on its replacement, the Grumman F-14 Tomcat. The Tomcat would be large enough to carry the AWG-9 and Phoenix weapons system while exceeding both the F-111's and the F-4's maneuverability. Seven aircraft were completed for testing but the model never entered fleet service.

F-111C
The F-111C is the export version for Australia, combining the F-111A with longer F-111B wings and strengthened FB-111A landing gear. Australia ordered 24 F-111s and, following delays, the Royal Australian Air Force  accepted the aircraft in 1973. Four of these were converted to the RF-111C reconnaissance variant in 1979–80. Australia also purchased four ex-USAF F-111As and converted them to C standard. In the 1990s, F-111C aircraft underwent a comprehensive digital avionics upgrade (known as the AUP) which introduced new nav/attack systems (PAVE TACK Laser /infrared targeting system) and flight control computers. The RAAF retired its last F-111Cs in December 2010.

F-111D
The F-111D was an upgraded F-111A equipped with newer Mark II avionics, more powerful engines, improved intake geometry, and an early glass cockpit. The variant was first ordered in 1967 and delivered from 1970–73. The F-111D reached initial operational capability in 1972. Deliveries were delayed due to avionics issues. 96 F-111Ds were built. The sole operator of this variant was the 27th TFW stationed at Cannon AFB, New Mexico.The F-111D used the new Triple Plow II intakes, which were located four inches (100 mm) further away from the airframe to prevent engine ingestion of the sluggish boundary layer air that was known to cause stalls in the TF30 turbofans. It had more powerful TF30-P-9 engines with 12,000 lbf (53 kN) dry and 18,500 lbf (82 kN) afterburning thrust. The Mark II avionics were digitally integrated microprocessor systems, some of the first used by the USAF, offering tremendous capability, but substantial problems. The Rockwell Autonetics digital bombing-navigation system included inertial navigation system, AN/APQ-130 attack radar system and Doppler radar. It also included digital computer set and multi-function displays (MFDs). The terrain-following radar was the Sperry AN/APQ-128. The attack radar featured a Doppler beam-sharpening, moving target indication (MTI), and Continuous-wave radar for guiding semi-active radar homing missiles.It took years to improve the reliability of the avionics, but issues were never fully addressed. According to Crandall, "The truth is that the D model didn't work. They parked every single one of them in Fort Worth for several years as they worked to fix the bugs". The F-111D was withdrawn from service in 1991 and 1992.

F-111E
A simplified, interim variant ordered after the F-111D was delayed, the F-111E used the Triple Plow II intakes, but retained the F-111A's TF30-P-3 engines and Mark I avionics. The weapon stores management system was improved and other small changes made. Crandall described the F-111E as "all analog, just like the A model, but It worked". The E-model was first ordered in 1968 and delivered from 1969–71. It achieved initial operational capability in 1969. The variant's first flight occurred on 20 August 1969. 94 F-111Es were built. Many F-111Es were assigned to the 20th TFW at Upper Heyford, UK until 1991. The avionics were upgraded on some E-models as part of an Avionics Modernization Program. The variant served in 1990-91 during the Gulf War. Some F-111Es received improved TF30-P-109 engines in the early 1990s. All F-111Es were retired to AMARC by 1995